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Abstract In many industrial applications, convection radiation and conduction participate
simultaneously to the heat transfers. A numerical approach able to cope with such problems has
been developed. The code SYRTHES is tackling conduction and radiation (limited to non
participating medium). Radiation is solved by a radiosity approach, and conduction by a finite
element method. Accurate and efficient algorithms based on a mixing of analytical/numerical
integration, and ray tracing techniques are used to compute the view factors. The fluid part is
solved by CFD codes like ESTET (Finite volumes) or N3S (Finite elements). SYRTHES relies on an
explicit numerical scheme to couple all the phenomena. No stability problems have been encountered.
To provide further flexibility, the three phenomena are solved on three independent grids. All data
transfers being automatically taken care of by SYRTHES. Illustrating applications are shown.

Introduction
In many industrial applications, convection radiation and conduction
participate simultaneously to the heat transfers. A numerical approach able to
cope with such problems has been developed. Experimental approaches have
been extensively used in the past, but they may become very costly when
dealing with very hot temperature and pressure, and they often lack the
flexibility needed when a parametric study is desired during the design phase.
On the other hand, heat transfer analysis softwares are becoming quite
promising to accurately calculate thermal phenomena and determine their
consequences, especially since affordable and powerful computer facilities are
available on the market.

The paper is focusing on the numerical technique used to tackle the
problems. A first part will briefly present the equation which needs to be
solved, then the paper focuses on the radiation problem. The view factors
calculation in 2D (Cartesian and axisymmetrical cases) and in 3D is presented.
The solver used to handle the radiosity system and the iterative technique used
to couple the different phenomena are discussed. Finally, several examples
illustrating some features of the code SYRTHES are included.

Equations to be solved
The conduction part
SYRTHES is a general purpose conduction code which solves the conduction
equation by a finite element method on unstructured grids. All material
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characteristics are allowed to vary with space and time. Anisotropy is handled as
well as periodicity in several directions. Classical boundary conditions
(prescribed temperature, flux, exchange conditions, contact resistance) are
available. Efficient numerical methods makes possible the use of large meshes
even on fairly small computers. Detailed informations on the conduction code
can be found in PeÂniguel and Rupp (1994a, 1994b).

The convection part
Again the purpose of this article is not to present the fluid codes retained in
detail. Basically the average Navier-Stokes equations are solved. Turbulence is
taken into account thanks to an eddy viscosity model like a kÿ ". The
boundary layer is handled through local wall functions. More details can be
found in Chabard and Pot (1995); MatteÂi and Simonin (1992); Delenne et al.
(1995).

The radiation part
One will devote more time to present the radiation part. All substances emit
electro-magnetic radiation. Unlike convection or conduction, radiative energy is
transmitted without need of a medium. A fairly complex radiation exchange
occurs inside the enclosure as radiation leaves a surface, travels to other
surfaces and is partially reflected, re-reflected many times with partial
absorption at each contact with a surface. The general equation is very
complex to handle. Fortunately, in many engineering systems calculation of
radiant interaction among diffusely emitting and reflecting surfaces can be
performed under the assumption that surfaces are gray. This implies that the
emissivity " and the absorptivity are equal (Kirchoff law) (here � � 1ÿ "). If
one notes J�x� the rate at which radiant energy streams away from a point x,
E�x� the emission at point x, the following continuous equation applies:

J�x� � E�x� � ��x�
Z

y2S

J�y� cos�1 cos�2

�r2
dy �1�

�1 and �2 are the angles between the normals at location x and y and the line of
sight joining these points, r is the distance between point x and y. In order to
solve this equation numerically, one has to break down the surface S of the
enclosure into a finite number of patches and solve a discrete system of
equation for the radiosity of these patches. To further simplify the problem, the
assumption is made that values across the surface of each patch are constant.

Let us suppose that the surface of the enclosure is subdivided into a
collection of N disjoint patches having a surface noted Ai. In the present
development all patches (noted Pi) are constituted of planar triangle surfaces
with straight edges. Equation (1) becomes:

J�x� � E�x� � ��x�
XN

i�1

Z
y2Pi

Ji
cos�1 cos�2

�r2
dy �2�
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Ji is the uniform radiosity of patch i, it can therefore be moved outside the
integral. Moreover, if one introduces:

Ji � 1

Ai

Z
x2Pi

J�x� dx and Ei � 1

Ai

Z
x2Pi

E�x�dx �3�

equation (2) becomes:

Ji � Ei � �i

XN

j�1

Jj
1

Ai

Z
x2Pi

Z
y2Pj

cos�1 cos�2

�r2
dydx �4�

One purely geometrical quantity appears in equation (4): the view factor (or
form factor) Fij

Fij � 1

Ai

Z
x2Pi

Z
y2Pj

cos�1 cos�2

�r2
dydx �5�

Fij can be interpreted physically like the proportion of the total power leaving
patch Pj that is received by patch Pi. It has numerous properties of interest
(reciprocity or additivity for example) when calculating and storing the view
factors.

Calculation of the view factors
Numerous techniques exist for the calculation of view factors (contour
integration, projection methods like Nusseltsphere or hemicube, Monte-Carlo).
Choosing an appropriate one is important, indeed the computation of the N 2

view factors (for an enclosure subdivided in N independent patches) is often
considered as a fairly costly process.

2D Cartesian and 3D view factors
The 2D Cartesian case degenerates to an elementary expression (Hottel's
crossed string method) when the couple of patches is fully visible. For 3D cases,
a method based on contour integrals (see Siegel and Howell, 1981) has been
used (see Figure 1). Using Stokes theorem, the order of integration can be
reduced from four to two, and the view factor expression becomes:

Fij � 1

2Si�

Z
Ci

Z
Cj

log r dri drj

A special treatment is required for cases where singularities appear in the
integrand. This is typically the case when two patches are in contact. The
distance r vanishes to 0, therefore the integrand goes to infinity. However, it is
also clear that the integral is bounded. After some fairly tedious manipulation,
it can be shown that all cases leading to non definite integrand have a closed
analytical integral solution. This analytical solution has been implemented in
SYRTHES. In other configurations, the integral can be reworked and partially
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analytically integrated. This methodology has the advantage that the
integrand of remaining part to integrate behaves smoothly and can be
integrated numerically at low cost. This provides a very efficient method both
in terms of accuracy and computing cost. Two examples will illustrate the type
of test cases performed to check the implementation, see Lin and Sparrow
(1965) for the analytical formula (Figures 2 and 3, Tables I and II).

Ci

r

n1
n2 Cj

Figure 1.
Contour integrals

1 m

1 m

d

Figure 2.
Rectangular patches

facing each other

1 m

1 m

Θ

Figure 3.
Rectangular patches

forming a corner

Table I.
Rectangular patches

facing each other

d�m� Analytical SYRTHES

10 0.00316205683 0.00316205683
1 0.19982489569 0.19982489569
0.1 0.82699452239 0.82699452297
0.01 0.98041660292 0.98041660542
0.001 0.99800563190 0.99800606681
0.0001 0.99980007097 0.99980026059
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Handling the occlusion cases
The shadowing aspects still need to be addressed. A ray-tracing method has
been used to overcome this particularly difficult problem. After using low cost
tests based on normals, coordinates, etc. to eliminate easy cases and reduce as
much as possible the number of costly tests, one draws rays between each
vertex of the couple of patches. SYRTHES checks if occluding patches intersect
the rays. If no intersection is found, the standard computation of form factor can
be performed, otherwise it means that a partial shadowing is taking place. An
option is then available, to subdivide the two initial patches in sub-patches, and
computations are carried out on each pair of sub-patches. Then additivity rules
apply for each sub-patch leading to the global Fij. The depth of refinement is
chosen by users and is basically a tradeoff between accuracy and cost.

Testing all patches likely to intersect would be very costly, therefore an
efficient algorithm has been implemented to handle this task. The principle is
exposed on a 2D case, but the same methodology applies in 3D. The first step
consists in building a quad-tree (see Figure 4). Space is partitioned in boxes (4
in 2D, and 8 in 3D), and patches are stored in the box they belong to. If the
number of patches in one specific box is above a certain level this particular
box is split recursively up to the point when each box contains a satisfactory
number of patches.

At this stage, we test if a ray between two points (here A and B) is stopped
by an intermediate patch (see Figure 5).

The first step is to determine that point A is located in box B1. Then, one
follows the ray to B. The ray goes through box B1. Then the patches belonging
to box B1 are tested. Since no intersection occurs, the algorithm keeps on going
and finds out that the ray is entering into box B2. Again, the B2 patches are

Table II.
Rectangular patches
forming a corner

Angle � Analytical SYRTHES

30 0.6190283 0.61902831
60 0.3709053 0.37090532
90 0.2000438 0.20004377

120 0.0866150 0.08661500
150 0.0213453 0.02134532
180 0. 0.00000002

Figure 4.
Building of a quad-tree
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tested but now an intersection is found. The conclusion is that point B cannot be
seen by A. Compared to the total number of patches, this elementary example
shows clearly that the number of patches tested has been dramatically reduced.

The 2D axisymmetrical case
Some industrial problems exhibit an axisymmetrical geometry. Since the
conduction code is capable of handling such cases on a bidimensional grid, it
was tempting to introduce the possibility of calculating the radiation problem
on a 2D grid as well. Indeed, it is much easier to generate a 2D mesh, moreover
the number of independent patches (segments in that case) is much lower. The
treatment used for the 2D Cartesian case doesn't apply anymore. Another
approach has been followed. After some manipulation, an axisymmetrical view
factor is expressed as an analytical function with respect to the angle of
visibility. Thus the order of integration has been reduced from four to two. The
remaining two integrals (corresponding to the integration along each segment i
an j) can be integrated with classical numerical methods.

Two rings on a cone (always visible segments)
Very good agreement is found between analytical and calculated view factors,
when the segments always see each other (see Figure 6 and Table III). However,
in most cases, the determination of the view factor is not trivial. Indeed some
patches can see each other at a certain angle and are occluded by intermediate
patches at other angles (see Figures 7 and 8).

When occlusion is occurring, a fairly delicate task still needs to be done. It
consists in finding out the proper angles of integration (or visibility). The
method implemented in SYRTHES, is to check if an intersection occurs
between the point i located in plane (� � 0) and the point j located in a vertical
plane forming an angle �. To achieve this at low cost, a projection of the 3D ray
in the polar system of coordinates is used. After elimination of trivial patches
(segments), all potential occluding candidates are tested. The accuracy of the
method is dependant on the discretization retained. In practice, an angular
discretization of 72 sections, or 144 (between �0; ��) seems adequate to provide

B

B3

B2

B1

A

Figure 5.
Visibility test between

A and B
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accurate results. The following example (see Figure 9 and Table IV) gives the
validation performed on two concentric cylinders, for which an analytical
expression is known.

It should be stressed that the method implemented is quite efficient because
all the information stored, generated and even the computations are all taking
place in a 2D space, even if thermal radiation is treated exactly.

z4
z3

z2
z1

r

ΨFigure 6.
Segments defining a
cone

Table III.
Comparisons for
segments on a cone

 z1 z2 z3 z4 Analytical SYRTHES

�=6 0. 0.1 0.5 0.6 0.0145100568276 0.014510056830
�=6 0. 0.1 0.2 0.25 0.0139078991326 0.013907899019
�=4 0. 0.1 0.5 0.6 0.0260748111926 0.026074811215
�=4 0. 0.1 0.2 0.25 0.0229771224013 0.022977122422

j

i

Figure 7.
Definition of an angle of
integration (total
visibility)
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Handling symmetries and periodicity
Quite often, when dealing with complex industrial cases, one wants to take
opportunity of symmetries or periodicity to reduce the calculation cost. With
radiation, one has to overcome the fact that it propagates in the whole domain
(even if only one part is modeled). The procedure retained is to duplicate the
initial grid up to the point when the radiation grid defines a closed domain.
Taking advantage of view factor properties, it is clear that only one part of the

j

θ

i

Figure 8.
Definition of an angle of

integration (partial
visibility)

0.25

0

0.5 1

1 2 Figure 9.
Validation of an

axisymmetrical case
with shadowing

Table IV.
Validation of an

axisymmetrical case
with shadowing

Surf x view factor S1F12

Analytical 0.21094110
SYRTHES 0.21094158
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view factors needs to be calculated and stored. Typically, for a collection of N
independent patches, with one symmetry, the total number of patches will be
2N, but the number of view factors to compute will be only N�N � 1� instead of
N�2N � 1� and the storage necessary will be N�N � 1�=2 since the
contributions of a patch j and its image through the symmetry j� to a patch i
will be added and stored at the same place in the matrix.

Solving the system
The enclosure being composed of N patches, a system of N linear equations
with N unknowns (the radiosity of each independent patch) can be written.

1ÿ �1F11 ÿ�1F12 : ÿ�1F1N

ÿ�2F21 1ÿ �2F22 : :
: : : :

ÿ�N FN1 : : 1ÿ �N FNN

0BB@
1CCA

J1

J2

:
JN

0BB@
1CCA �

E1

E2

:
EN

0BB@
1CCA �6�

An iterative conjugate residual method is used to solve the system. It converges in
a few iterations due to the property of the matrix. Such a system is written and
solved for each wavelength band when the radiative properties of the wall vary
according the wavelength. In that case the exitance for each system Ei��; � � ���
corresponds to the integral of the Planck spectrum over the specific band
��; ����� instead of "�T4 when the material behaves as a gray body.

Algorithm to couple conduction radiation and convection
Let Ts be the temperature of an internal solid node, Tw the temperature at a
node which belongs to the interface, and Tf the temperature of a fluid point
(located generally in the log layer) and Pi a radiation patch (see Figure 10).

At time tn, Tn
s , Tn

w, Tn
f are known

. From the local fluid conditions and the wall temperature, the CFD code
provides after calculation:

hn�1
f : the local heat exchange coefficient at time tn�1

Tn�1
f : the local inside fluid temperature at time tn�1

. From Tw it is possible after interpolation to calculate an average
temperature Ti for each radiation patch Pi, from which emittance is
computed. Once solved the radiosity system yields the radiative flux to
apply on the solid boundary.

Surface grid
used for
radiation

Fluid

Solid
Ts

Tw
Ts

Pi

Tf

Pj

φs

φ f

Figure 10.
Data exchange
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Fluxrad � hn�1
rad Tn�1

w ÿ Taux
rad

ÿ �
with Taux

rad � 1
�

PN
j�1 FijJj

� �1=4

and hn�1
rad � "i� �Tn

w�2 � �Taux
rad �2

� �
Tn

w � Taux
rad

ÿ �
"i being the emissivity and Ji the radiosity of patch i. Fij is the view
factor between patch i and j.

. After interpolation on the solid grid (Taux
rad becomes Tn�1

rad ), the flux to be
applied is

�n�1
s � hn�1

f �Tn�1
w ÿ Tn�1

f � � hn�1
rad Tn�1

w ÿ Tn�1
rad

ÿ �
The notation Tn�1

w indicates that this temperature is treated an implicit
way.

. Using this flux (or exchange conditions (h;T)) the heat conduction
equation gives updated values of Tn�1

s over all the solid domain (and of
course on the interface where they are noted Tn�1

w ).

Thus Tn�1
s , Tn�1

w , Tn�1
f are known at time tn�1

Details on the calculation of the turbulent heat exchange coefficient hf are
given in Delenne and Pot (1995) and PeÂniguel and Rupp (1993). Details on the
radiation system solved can be found in PeÂniguel and Rupp (1995).

The difficulty originating from the non-linearity in temperature has been
removed by linearization of the boundary condition. Then this condition is
treated implicitly by the conduction code. No stability problem has been
observed so far.

To remove the big problem of memory required for the storage of view
factors, one relies on an independent surface grid provided by users. This
allows the number of triangular independent patches to stay reasonable (less
than 5,000 for example) with a grid refinement located exactly where users
wish it to be. Of course, this implies at each step to interpolate quantities
between the conduction grid and the radiation grid. This interpolation is
performed automatically by SYRTHES.

Applications
A 3D case
The 3D problem treated corresponds to the warming of metal plates (10cm
thick) of arbitrary shape placed in an oven. The main dimensions of this ``oven''
are indicated on Figure 11. One considers here that the oven is heated by the
top. This condition is modeled by setting the external top side of the wall at a
fixed temperature of 1200ëC. The external wall of the oven on the side and the
bottom is maintained at a cold temperature of 20ëC. Only 1/6th of the geometry
has been modeled (see Figure 11 and Figure 12), however by periodicity (six
times here) the full domain forms a closed enclosure. The conduction grid
contains 13,608 elements and 23,510 nodes.

The radiation grid is composed by 2,300 independent patches.
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As explained earlier, the number of calculated view factors is not �6:2300�2=2
but only 6:�2300�:�2301�=2, and the number of view factor stored is
�2300�:�2301�=2. A time step of 100 seconds has been retained. By radiation the
inner plates successively warm up. No stability difficulties have been
encountered during the transient before reaching a steady state (see Figures 14
and 15). Figure 13 presents the thermal transient observed.

The CPU time, on a SKI workstation, required for the initialization
(including the view factors calculation) is 2,945s. Each radiation system costs
around 3.7s to solve, while a conduction step costs around 8.9 seconds.

A 2D axisymmetrical case
The second example given is fairly similar to the previous one but is treated
with the axisymmetrical option. Figure 16 presents the conduction and
radiation grids. The grid size is 586 elements and 1,393 nodes for the
conduction grid and 96 independent segments for the radiation grid. The
initialization takes 0.99s (including the calculation of the view factors) on a SGI
workstation, and each time step of 100s is performed in less than 0.05s (0.042s
for the conduction, and 0.0038s for the radiation).

Figure 17 presents the temperature contours during the transient. The same
behavior as for the 3D case is observed.

Fixed temperature
on the top part (1200 °C)

F
ix

ed
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m
pe
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0 
°C
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mperature 20 °C

1.
2 

m

0.5 m

Figure 11.
Conduction grid
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Coupling convection conduction and radiation
The example given concerns underground electrical cables. To meet
environmental requirements, EDF is planning to rely more and more on
underground cables to transport electricity. Independently of the financial
aspect, one has to make sure that such an option is technically possible from
the thermal point of view. Indeed, by Joule effect, the inner cable tends to warm
up. The heat released increases with temperature. Above a certain critical

Figure 12.
Radiation grid

1000s 3000s 5000s 30000s
Figure 13.

Thermal contours in a
section
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temperature, damage can arise. In reality, heat is transmitted through the earth,
and an equilibrium is reached.

Here in this simplified configuration, the outer side of the envelop is
maintained at a low temperature of 20ëC. The Joule effect is simulated by a
constant source term whose value is 35326.64W=m3. Thanks to the very long
pipe geometry, the 2D approximation is justified as long as the cable is
perfectly horizontal. For the radiation, the 2D Cartesian option is activated.
Initially at 20ëC, the thermal transient is simulated and a permanent state is
obtained after a few hours. The fluid Cartesian grid (58x117) is used by the
finite volume CFD code ESTET. The solid grid used by SYRTHES, contains

30000s

1200 deg C

20
 d

eg
 C

20 deg C

Figure 14.
Thermal contours once
the steady state reached
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Figure 16.
Grid used for the 2D

axisymmetrical example
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Figure 17.
Thermal contours

during the transient
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2,408 nodes (Figure 18). It is clear that nodes are not coincident at the interface
even if they approach the same geometrical boundary. This provides a very
appreciated flexibility for industrial configurations.

Figures 19 and 20 present the thermal field and the velocity field once a
steady solution has been obtained. A free convection loop is taking place due to
the differential temperature existing between the inner cable and the external
pipe. It is interesting to notice the influence of each phenomena, taken
separately, which is easy to do by calculation. It appears that even at these
relatively low temperatures almost 80 per cent of the energy transfer is taking
place by radiation, which is coherent with experimental measurements, and
simplified approaches.
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Figure 18.
Grid used by ESTET
and SYRTHES
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Velocity and
temperature
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Conclusion
This paper has presented a numerical approach to simulate complex thermal
problems where radiation, convection and conduction are present. Neglecting
one of these modes may lead to bad prediction. Accurate and efficient
algorithms to calculate the view factors have been implemented. Using
independent grids for conduction and radiation and convection provides an
attractive flexibility, moreover it makes sure that the number of patches used
for radiation stays reasonable and that refinement takes place where it is most
needed. The cost increase compared to a purely conductive or convective study
stays very reasonable. It is worth noting that SYRTHES can also be coupled to
several CFD codes simultaneously thanks to message passing techniques (see
PeÂniguel and Rupp, 1997) leading to an interesting numerical tool when
conduction, radiation and convection are simultaneously present.
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